

envdir (Python port)

[image: Linux Build Status]
 [https://travis-ci.org/jezdez/envdir][image: Windows Build Status]
 [https://ci.appveyor.com/project/jezdez/envdir]This is a Python port of daemontools [http://cr.yp.to/daemontools.html]’ tool envdir [http://cr.yp.to/daemontools/envdir.html]. It works on Windows and
other systems which can run Python. It’s well tested and doesn’t need a
compiler to be installed.

envdir runs another program with a modified environment according to files
in a specified directory.

So for example, imagine a software you want to run on a server but don’t
want to leave certain configuration variables embedded in the program’s source
code. A common pattern to solve this problem is to use environment variables
to separate configuration from code.

envdir allows you to set a series of environment variables at once to simplify
maintaining complicated environments, for example in which you have multiple sets
of those configuration variables depending on the infrastructure you run your
program on (e.g. Windows vs. Linux, Staging vs. Production, Old system vs.
New system etc).

Let’s have a look at a typical envdir:

$ tree envs/prod/
envs/prod/
├── DJANGO_SETTINGS_MODULE
├── MYSITE_DEBUG
├── MYSITE_DEPLOY_DIR
├── MYSITE_SECRET_KEY
└── PYTHONSTARTUP

0 directories, 3 files
$ cat envs/prod/DJANGO_SETTINGS_MODULE
mysite.settings
$

As you can see each file has a capitalized name and contains the value of the
environment variable to set when running your program. To use it, simply
prefix the call to your program with envdir:

$ envdir envs/prod/ python manage.py runserver

That’s it, nothing more and nothing less. The way you structure your envdir
is left to you but can easily match your configuration requirements and
integrate with other configuration systems. envdirs contain just files after
all.

An interesting summary about why it’s good to store configuration values in
environment variables can be found on the 12factor [http://12factor.net/config] site.

Note

This Python port behaves different for multi line environment variables.
It will not only read the first line of the file but the whole file. Take
care with big files!

Tip

Feel free to open tickets at https://github.com/jezdez/envdir/issues.

More documentation

	Installation
	As Python package

	As standalone script
	Windows

	Linux, Mac OS, others

	Usage
	Command line

	Isolated shell

	Setup an empty environment variable

	Python API

	Changelog
	1.0.0 (26/03/2018)

	0.7 (08/10/2014)

	0.6.1 (12/23/2013)

	0.6 (12/03/2013)

	0.5 (09/22/2013)

	0.4.1 (08/21/2013)

	0.4 (08/09/2013)

	0.3 (07/30/2013)

	0.2.1 (07/11/2013)

	0.2 (07/10/2013)

	0.1 (07/10/2013)

Installation

As Python package

$ pip install envdir

or:

$ easy_install envdir

As standalone script

Alternatively you can also download a standalone executable that follows
Python’s PEP 441 [http://www.python.org/dev/peps/pep-0441/] and works with the Python Launcher for Windows (PEP 397 [http://www.python.org/dev/peps/pep-0397/]).
Simply install the launcher from its site [https://bitbucket.org/pypa/pylauncher/] (downloads [https://bitbucket.org/pypa/pylauncher/downloads]) and you’re ready to
follow the rest of the instructions below.

Windows

Note

The Python Launcher for Windows also provides other useful features like
being able to correctly launch Python when double clicking a file with
the .py file extension, a py command line tool to easily launch the
interactive Python shell when you’re working on the command line. See
the Python Launcher for Windows documentation [https://bitbucket.org/pypa/pylauncher/src/tip/Doc/launcher.rst] for more infos.

Next step is downloading the actual standalone script. On Windows this entails
using your web browser to download the following URL:

https://github.com/jezdez/envdir/releases/download/0.7/envdir-0.7.pyz

Or simply run this on the command line to trigger the download with your
default web browser:

C:\WindowsExplorer.exe https://github.com/jezdez/envdir/releases/download/0.7/envdir-0.7.pyz

Then – from the location you downloaded the file to – run the envdir script
like you would any other script:

C:\Users\jezdez\Desktop>.\envdir-0.7.pyz ..

Linux, Mac OS, others

On Linux, Mac OS and other platforms with a shell like bash simply download
the standalone file from Github:

$ curl -LO https://github.com/jezdez/envdir/releases/download/0.7/envdir-0.7.pyz

and then run the file like you would do when running the script installed by
the envdir package (see above):

$./envdir-0.7.pyz ..

Usage

Command line

From the original envdir [http://cr.yp.to/daemontools/envdir.html] documentation:

envdir runs another program with environment modified according to files
in a specified directory.

Interface:

envdir d child

d is a single argument. child consists of one or more arguments.

envdir sets various environment variables as specified by files in the
directory named d. It then runs child.

If d contains a file named s whose first line is t, envdir
removes an environment variable named s if one exists, and then adds
an environment variable named s with value t. The name s must
not contain =. Spaces and tabs at the end of t are removed.
Nulls in t are changed to newlines in the environment variable.

If the file s is completely empty (0 bytes long), envdir removes an
environment variable named s if one exists, without adding a new
variable.

envdir exits 111 if it has trouble reading d, if it runs out of
memory for environment variables, or if it cannot run child. Otherwise
its exit code is the same as that of child.

Alternatively you can also use the python -m envdir form to call envdir.

Isolated shell

envdir also includes an optional CLI tool called envshell which launches
a subshell using the given directory. It basically allows you to make a set
of environment variable stick to your current shell session if you happen to
use envdir a lot outside of simple script use.

For example:

$ envshell ~/mysite/envs/prod/
Launching envshell for /home/jezdez/mysite/envs/prod. Type 'exit' or 'Ctrl+D' to return.
$ python manage.py runserver
..

To leave the subshell, simply use the exit command or press Ctrl+D.

Setup an empty environment variable

Use an empty line to setup an empty environment variable (in contrast to an
empty file, which would unset the environment variable):

$ echo > envdir/EMPTY_ENV
$ envdir envdir env | grep EMPTY_ENV
EMPTY_ENV=

Python API

	
envdir.open([path])

	

To use an envdir in a Python file (e.g. Django’s manage.py) simply call
the open function of the envdir module:

import envdir
envdir.open()

envdir will try to find an envdir directory next to the file you modified.

It’s also possible to explicitly pass the path to the envdir:

import envdir

envdir.open('/home/jezdez/mysite/envs/prod')

Calling open will automatically apply all environment variables to the
current instance of os.environ.

If you want to implement more advanced access to envdirs there is also an
own dict-like Env object to work with. The above example
could also be written like this:

import envdir

env = envdir.open('/home/jezdez/mysite/envs/prod')

The returned Env instance has a dict-like interface but also
features a clear() method to reset the current instance of
os.environ [https://docs.python.org/3/library/os.html#os.environ] to the value it had before the envdir was opened:

import envdir

env = envdir.open('/home/jezdez/mysite/envs/prod')

do something

env.clear()

Since calling the clear method should be done in a transparent manner
you can also use it as a context manager:

import envdir

with envdir.open('/home/jezdez/mysite/envs/prod') as env:
 # do something

Outside the context manager block the environ is reset back automatically.

To access and write values you can also use the dict-like interface:

import envdir

with envdir.open() as env:
 env['DATABASE_URL'] = 'sqlite://:memory:'
 assert 'DATABASE_URL' in env
 assert env.items() == [('DATABASE_URL', 'sqlite://:memory:')]

Note

Additions to the envdir done inside the context manager block are
persisted to disk and will be available the next time your open the
envdir again.

Of course you can also directly interact with Env instances,
e.g.:

import envdir

with envdir.Env('/home/jezdez/mysite/envs/prod') as env:
 # do something here

The difference between instantiating an Env yourself to
using envdir.open() is that you’ll lose the automatic discovery of
the envdir directory.

See the API docs below for a full list of methods available in the
Env object.

	
class envdir.Env(path)

	An dict-like object to represent an envdir environment with extensive
API, can be used as context manager, too.

	
__cmp__(dict)

	

	
__contains__(name)

	

	
__delitem__(name)

	

	
__enter__()

	

	
__exit__(type, value, traceback)

	

	
__getitem__(name, default=<object object>)

	

	
__hash__ = None

	

	
__init__(path)

	

	
__iter__()

	

	
__len__()

	

	
__module__ = 'envdir.env'

	

	
__repr__()

	

	
__setitem__(name, value)

	

	
clear()

	Clears the envdir by resetting the os.environ items to the
values it had before opening this envdir (or removing them
if they didn’t exist). Doesn’t delete the envdir files.

	
copy()

	

	
fromkeys(iterable, value=None)

	

	
get(key, failobj=None)

	

	
has_key(key)

	

	
items()

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
keys()

	

	
pop(key, *args)

	

	
popitem()

	

	
setdefault(key, failobj=None)

	

	
update(*args, **kwargs)

	

	
values()

	

Changelog

1.0.0 (26/03/2018)

	Drop python 2.6, 3.2 and 3.3

	Add explicit support for python 3.6

	Add support for symlinks

	Improved support for windows

0.7 (08/10/2014)

	Use exec (os.execvpe) to replace the envdir process with the child
process (fixes #20).

	Change isenvvar() to only check for = in var names.

0.6.1 (12/23/2013)

	Fixed handling SIGTERM signals to make sure all children of the forked
process are killed, too. Thanks to Horst Gutmann for the report and
help fixing it.

0.6 (12/03/2013)

	Rewrote tests with pytest.

	Vastly extended Python API.

	Added Sphinx based docs: https://envdir.readthedocs.io/

	Fixed killing child process when capturing keyboard interrupt.

	Added standalone script based on PEPs 441 and 397, compatible with
Python Launcher for Windows. See the installation instructions for more
info.

0.5 (09/22/2013)

	Added check if the the provided path is a directory and throw an error if
not. This adds compatibility to the daemontools’ envdir.

	Make sure to convert Nulls (\0) to newlines as done so in daemontools’
envdir.

0.4.1 (08/21/2013)

	Fixed envdir.read() to actually work with already existing environment
variables. Extended docs to test Python use.

0.4 (08/09/2013)

	Added envshell command which launches a subshell using the environment
as defined in the given envdir. Example:

$ envshell ~/mysite/envs/prod/
Launching envshell for /home/jezdez/mysite/envs/prod. Type 'exit' or 'Ctrl+D' to return.
$ python manage.py runserver
..

0.3 (07/30/2013)

	Catch KeyboardInterrupt exceptions to not show a traceback from envdir
but the repsonse from the called command.

	Allow multiline environment variables. Thanks to Horst Gutmann for the
suggestion. This is a departure from daemontools’ standard which only
allows the first line of the environment variable file.

0.2.1 (07/11/2013)

	Fixed python -m envdir

	Extended README to better describe the purpose

0.2 (07/10/2013)

	Added ability to use envdir from Python.

0.1 (07/10/2013)

	Initial release.

Index

 _
 | C
 | E
 | F
 | G
 | H
 | I
 | K
 | P
 | S
 | U
 | V

_

 	
 	__cmp__() (envdir.Env method)

 	__contains__() (envdir.Env method)

 	__delitem__() (envdir.Env method)

 	__enter__() (envdir.Env method)

 	__exit__() (envdir.Env method)

 	__getitem__() (envdir.Env method)

 	
 	__hash__ (envdir.Env attribute)

 	__init__() (envdir.Env method)

 	__iter__() (envdir.Env method)

 	__len__() (envdir.Env method)

 	__module__ (envdir.Env attribute)

 	__repr__() (envdir.Env method)

 	__setitem__() (envdir.Env method)

C

 	
 	clear() (envdir.Env method)

 	
 	copy() (envdir.Env method)

E

 	
 	Env (class in envdir)

 	
 	envdir.open() (built-in function)

F

 	
 	fromkeys() (envdir.Env method)

G

 	
 	get() (envdir.Env method)

H

 	
 	has_key() (envdir.Env method)

I

 	
 	items() (envdir.Env method)

 	iteritems() (envdir.Env method)

 	
 	iterkeys() (envdir.Env method)

 	itervalues() (envdir.Env method)

K

 	
 	keys() (envdir.Env method)

P

 	
 	pop() (envdir.Env method)

 	
 	popitem() (envdir.Env method)

S

 	
 	setdefault() (envdir.Env method)

U

 	
 	update() (envdir.Env method)

V

 	
 	values() (envdir.Env method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 envdir (Python port)

 		
 Installation

 		
 As Python package

 		
 As standalone script

 		
 Windows

 		
 Linux, Mac OS, others

 		
 Usage

 		
 Command line

 		
 Isolated shell

 		
 Setup an empty environment variable

 		
 Python API

 		
 Changelog

 		
 1.0.0 (26/03/2018)

 		
 0.7 (08/10/2014)

 		
 0.6.1 (12/23/2013)

 		
 0.6 (12/03/2013)

 		
 0.5 (09/22/2013)

 		
 0.4.1 (08/21/2013)

 		
 0.4 (08/09/2013)

 		
 0.3 (07/30/2013)

 		
 0.2.1 (07/11/2013)

 		
 0.2 (07/10/2013)

 		
 0.1 (07/10/2013)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

